

Section 12

Lecture 6

Features of *the martingale* $I(t)$

- The *predictable variation*

$$\langle I \rangle(t) = \langle \int G dM \rangle(t) = \int_0^t G^2(s) d\langle M \rangle(s).$$

- The *optional variation process*

$$[I](t) = \left[\int G dM \right](t) = \int_0^t G^2(s) d[M](s).$$

I might ask you to prove this in a future homework.

Nelson-Aalen's small sample behaviour

Define the indicator $J(t) = I(Z(t) > 0)$ and

$$W(t) = \begin{cases} \frac{J(t)}{Z(t)}, & Z(t) > 0, \\ 0, & Z(t) = 0. \end{cases}$$

Define $H^*(t) = \int_0^t J(s)\alpha(s)ds$.

Theorem (Small sample behaviour of Nelson-Aalen)

$\hat{H}(t)$ is an unbiased estimator of $H^*(t)$ with variance
 $\text{Var}(\hat{H}(t) - H^*(t)) = \mathbb{E}(\int_0^t W(s)^2 dN(s))$.

Argument for the Nelson-Aalen estimator

Remember that the Nelson-Aalen estimator is

$$\hat{H}(t) = \sum_{T_j \leq t} \frac{1}{Z(T_j)} \equiv \sum_{T_j \leq t} \Delta \hat{H}(T_j),$$

- Suppose that our counting process N is an aggregated process obtained from observation of n individual processes.
- The Nelson-Aalen estimator $\hat{H}(t)$ can be re-written as a counting process integral

$$\begin{aligned} \int_0^t W(s) dN(s) &= \int_0^t W(s) \lambda(s) ds + \int_0^t W(s) dM(s) \\ &= \int_0^t J(s) \alpha(s) ds + \int_0^t W(s) dM(s) \end{aligned}$$

Argument for small sample behaviour of the Nelson-Aalen estimator

- We have defined $H^*(t) = \int_0^t J(s)\alpha(s)ds$, and thus

$$\hat{H}(t) - H^*(t) = \int_0^t W(s)dM(s).$$

That is, a mean zero martingale.

- $\mathbb{E}\{\hat{H}(t) - H^*(t)\} = 0$ Thus, $\hat{H}(t)$ is an unbiased estimator of $H^*(t)$, but not necessarily of H . Remember that $\text{Var}(M(t)) = \mathbb{E}\{[M](t)\} = \mathbb{E}\{N(t)\}$, and using the result from Slide 155,

$$\text{Var}(\hat{H}(t) - H^*(t)) = \mathbb{E}\{[\hat{H} - H^*](t)\} = \mathbb{E}\left\{\int_0^t W(s)^2 dN(s)\right\}$$

Remark on $H(t)$ and $H^*(t)$

- Suppose we restrict ourselves to an interval $[0, \tau]$ such that $S(\tau) > 0$.
- Then $\lim_{n \rightarrow \infty} H^{*(n)}(t) = H(t)$.

Large sample properties

Suppose N is obtained by aggregating n individual processes. We will then use the Martingale central limit theorem.

Theorem (Rebolledo's martingale central limit theorem)

Let $V(t)$ be a strictly increasing continuous function with $V(0) = 0$. Let $\tilde{M}^{(n)}$, $n \geq 1$ be a sequence of mean zero martingales on $[0, \tau]$, and let $\tilde{M}_\epsilon^{(n)}$ be the martingale containing all the jumps of $\tilde{M}^{(n)}$ larger than a given $\epsilon > 0$. If

- $\langle \tilde{M}^{(n)} \rangle(t) \xrightarrow{P} V(t)$ for all $t \in [0, \tau]$ as $n \rightarrow \infty$
- $\langle \tilde{M}_\epsilon^{(n)} \rangle(t) \xrightarrow{P} 0$ for all $t \in [0, \tau]$ and $\epsilon > 0$ as $n \rightarrow \infty$,

then the sequence $\tilde{M}^{(n)}$ converges in distribution to the mean zero martingale U given by $U(t) = B(V(t))$, where $B(\cdot)$ is a Wiener process (Brownian motion).

What you must know about the Martingale Central Limit Theorem

Under fairly general assumptions, a sequence of martingales $\tilde{M}^{(n)}$ will converge in distribution to a mean zero Gaussian martingale $U(t) = B(V(t))$, where $V(t)$ is a strictly increasing continuous function with $V(0) = 0$ and $B(t)$ is a Wiener process (formal definition in the next slide, as repetition). Thus, U inherits the properties of a Wiener process:

- $U(0) = 0$
- $U(t) - U(s)$ are normally distributed with mean 0 and variance $V(t) - V(s)$.
- independent increments.
- continuous sample paths.

Definition (Wiener process)

The $B = \{B(t) : t \in [0, \tau]\}$ is a process satisfying

- $B(0) = 0$,
- independent increments, that is, $B(t + u) - B(t)$ $u \geq 0$ are independent of $B(s)$, for all $s \leq t$,
- Gaussian increments, that is, $B(t + u) - B(t) \sim \mathcal{N}(0, u)$,
- continuous sample paths, that is, $B(t)$ is continuous in t .

Sufficient conditions for the Martingale CLT

We will study the limiting behaviour of sequences of stochastic integrals on the form

$$\int_0^t G^{(n)}(s) dM^{(n)}(s),$$

where G is a predictable process and M is counting process martingale. More generally, we will study sums of $1, \dots, k$ such integrals

$$\sum_{j=1}^k \int_0^t G_j^{(n)}(s) dM_j^{(n)}(s).$$

In this setting, Let $V(t) = \int_0^t v(s) ds$. For the martingale CLT to hold it is sufficient that the following two conditions hold (under regularity conditions):

- $\sum_{j=1}^k (G_j^{(n)}(s))^2 \lambda_j^{(n)}(s) \xrightarrow{P} v(s) > 0$ for all $j = 1, \dots, k$ $s \in [0, \tau]$, as $n \rightarrow \infty$.
- $G_j^{(n)}(s) \xrightarrow{P} 0$ for all $j = 1, \dots, k$ and $s \in [0, \tau]$, as $n \rightarrow \infty$.

Properties of the Nelson-Aalen estimator

Theorem (Large sample properties of Nelson-Aalen)

$\sqrt{n}(\hat{H}(t) - H^*(t))$ converges in distribution to a mean zero martingale with variance $\sigma^2(t) = \int_0^t \frac{\alpha(s)}{z(s)} ds$.

At a particular t , the Nelson-Aalen estimator is approximately normal, and a consistent estimator of the variance of $\hat{H}(t)$ is

$$\hat{\sigma}^2(t) = \int_0^t W(s)^2 dN(s).$$

Note that we can also the survival function from the cumulative hazard function using the estimator

$$\hat{\hat{S}}(t) = \exp\{-\hat{H}(t)\},$$

which is consistent by the continuous mapping theorem: for a continuous function g , if $X^{(n)} \xrightarrow{D} X$ then $g(X^{(n)}) \xrightarrow{D} g(X)$.

Large Sample Properties of Nelson-Aalen

Remember that $W(s) = \frac{J(t)}{Z(t)}$ when $Z(t) > 0$. Consider the martingale

$$\sqrt{n}(\hat{H}(t) - H^*(t)) = \int_0^t \sqrt{n}W(s)dM(s).$$

Assume that $\frac{Z(t)}{n} \xrightarrow{P} z(t) > 0$ for all $t \in [0, \tau]$ as $n \rightarrow \infty$.

When $J(t) = 1$, we have that for $G(t) = \sqrt{n}J(t)/Z(t)$ and $\lambda(t) = Z(t)\alpha(t)$,

$$G(t)^2\lambda(t) = \frac{J(t)\alpha(t)}{Z(t)/n} \xrightarrow{P} \frac{\alpha(t)}{z(t)}$$

$$G(t) = \frac{1}{\sqrt{n}} \frac{J(t)}{Z(t)/n} \xrightarrow{P} 0,$$

for all $t \in [0, \tau]$ as $n \rightarrow \infty$.

So, here we can use the martingale clt...

How to obtain confidence intervals

We can therefore write standard confidence intervals at level η by $\hat{H}(t) \pm z_{1-\eta/2} \hat{\sigma}(t)$, where $z_{1-\eta/2}$ is the $1 - \eta/2$ fractile of the standard normal distribution.

Time between first and second birth

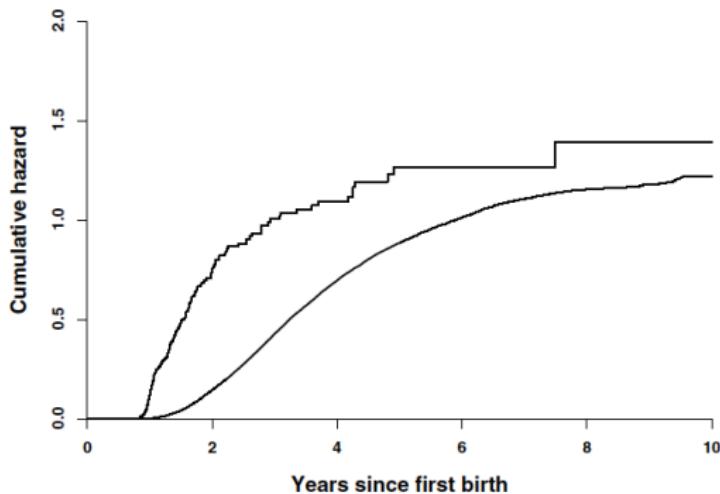


Fig. 3.1 Nelson-Aalen estimates for the time between first and second births. Lower curve: first child survived one year; upper curve: first child died within one year.

Time between first and second birth

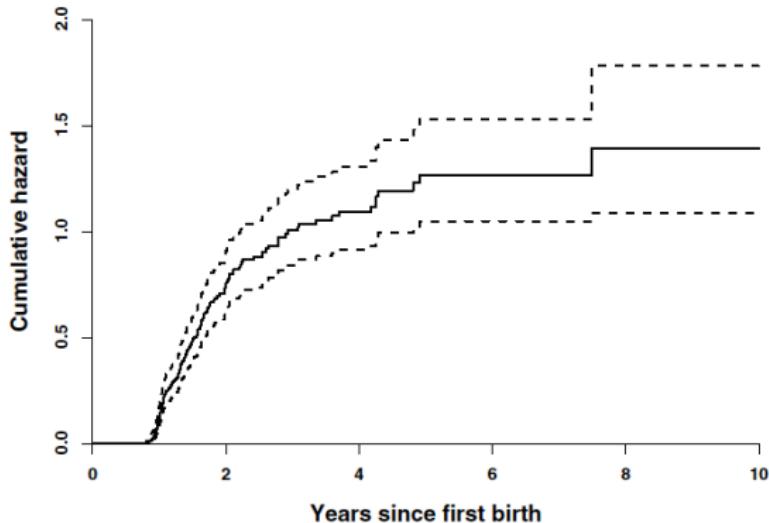


Fig. 3.2 Nelson-Aalen estimates for the time between first and second births with log-transformed 95% confidence intervals for women who lost their first child within one year of its birth.

Example Divorce Rates²¹

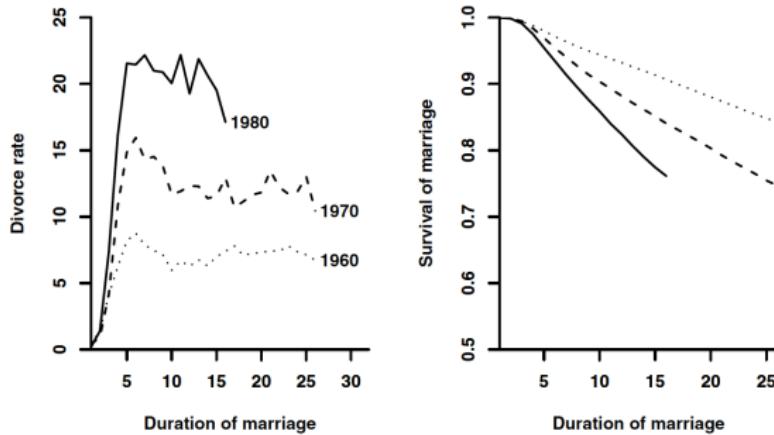
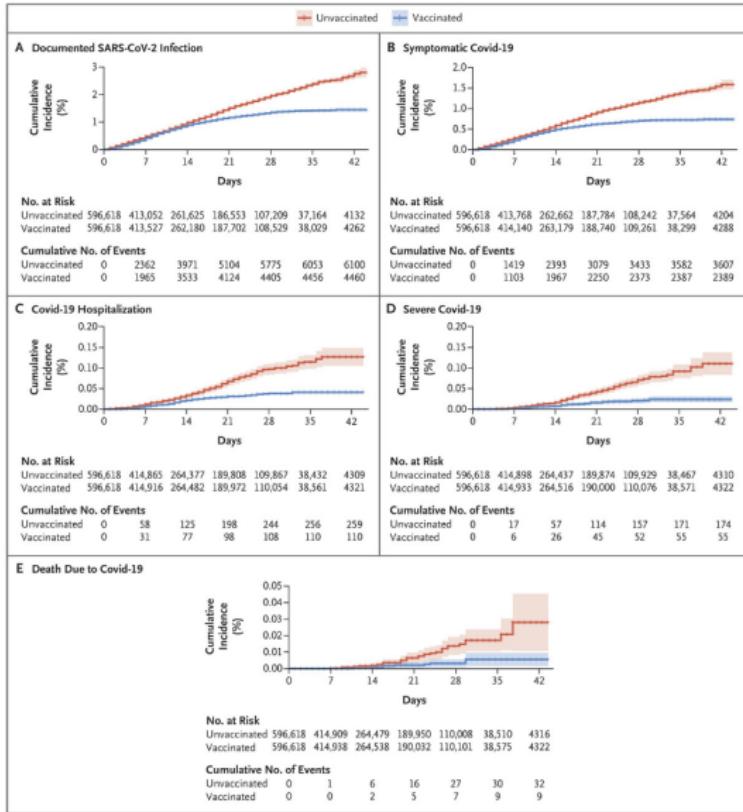


Fig. 1.4 Rates of divorce per 1000 marriages per year (left panel) and empirical survival curves (right panel) for marriages contracted in 1960, 1970, and 1980. (Based on data from Statistics Norway.)

²¹from Aalen et al (2008)

Example COVID in real-life



Angioplasty is standard of care

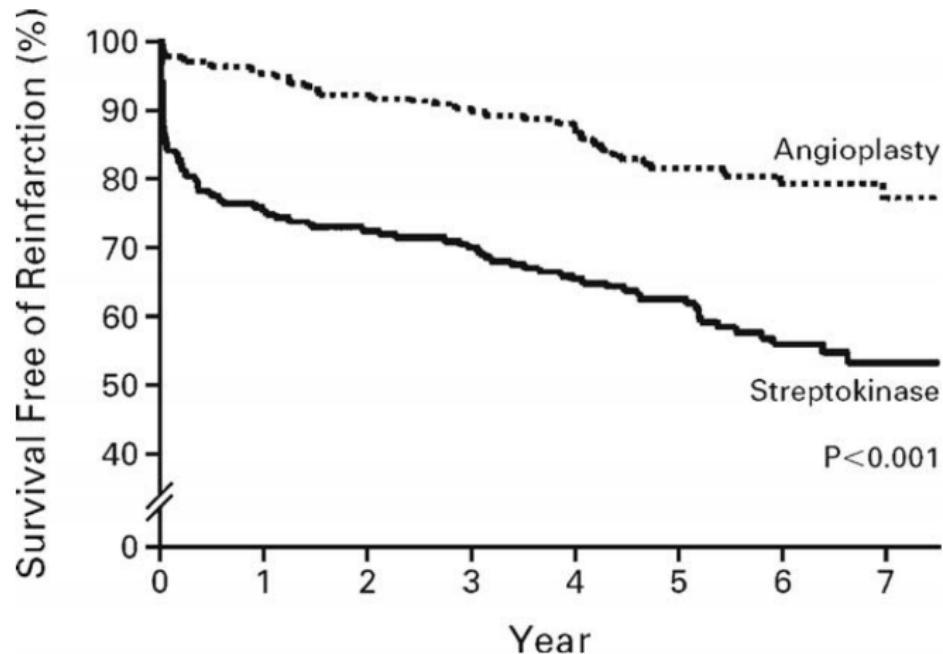


Fig. 1.5 Survival curves for two treatments of myocardial infarction. Figure reproduced with permission from Zijlstra et al. (1999). Copyright The New England Journal of Medicine.

Kaplan-Meier estimator

The most common estimator in the survival analysis literature is the Kaplan-Meier estimator.

Suppose we partition $[0, t]$ into small intervals defined by $0 < t_0, t_1, \dots, t_K = t$, and use conditional probabilities to express

$$S(t) = \prod_{k=1}^K S(t_k | t_{k-1}), \quad S(v | u) = \frac{S(v)}{S(u)}, \quad v > u.$$

Then we estimate $S(t_k | t_{k-1})$ by 1 if no event happened in $(t_{k-1}, t_k]$, and if an event happened, and if $T_j \in (t_{k-1}, t_k]$ we estimate it by

$$1 - 1/Z(t_{k-1}) = 1 - 1/Z(T_j), \text{ where } Z(t) = \sum_{i=1}^n I(\tilde{T}_i \geq t).$$

Definition (The Kaplan-Meier estimator)

$$\hat{S}(t) = \prod_{T_j \leq t} \left\{ 1 - \frac{1}{Z(T_j)} \right\},$$

where $T_j \in \{T_j : D_j = 1\}$.

Relation between Nelson-Aalen and Kaplan-Meier

We shall see that the Nelson-Aalen estimator and the Kaplan-Meier estimator are closely related.

Let $T > 0$ be a random survival time. Hitherto, we have assumed that $S(t)$ is absolutely continuous. Now, we relax this assumption: suppose $S(t)$ is *cadl  g*. Then we can define the cumulative hazard as

$$H(t) = - \int_0^t \frac{dS(u)}{S(u-)}$$

where $S(u-)$ is the left limit of $S(u)$ and the right hand side is a Stieltjes integral (Now, however $\alpha(t) = dH(t)/dt$ does not necessarily exist). In differential form $dS(t) = -S(t-)dH(t)$ or more formally in integral form $S(t) = 1 - \int_0^t S(u-)dH(u)$.

- If $S(t)$ is absolutely continuous, then $dS(u) = -f(u)du$ and $S(u-) = S(u)$, and $H(t) = \int_0^t \frac{f(u)}{S(u)}du$.

Informally, think about $dS(t)$ as the increment of S in $[t, t + dt)$.