
Section 12

Lecture 6
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Features of the martingale I (t)

The predictable variation

hI i(t) = h
Z

GdMi(t) =
Z

t

0
G

2(s)dhMi(s).

The optional variation process

[I ](t) =
⇥ Z

GdM
⇤
(t) =

Z
t

0
G

2(s)d [M](s).

I might ask you to prove this in a future homework.
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Nelson-Aalen’s small sample behaviour

Define the indicator J(t) = I (Z (t) > 0) and

W (t) =

(
J(t)
Z(t) ,Z (t) > 0,

0,Z (t) = 0.

Define H
⇤(t) =

R
t

0 J(s)↵(s)ds.

Theorem (Small sample behaviour of Nelson-Aalen)

Ĥ(t) is an unbiased estimator of H
⇤(t) with variance

Var(Ĥ(t)� H
⇤(t)) = E(

R
t

0 W (s)2dN(s)).
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Argument for the Nelson-Aalen estimator

Remember that the Nelson-Aalen estimator is
Ĥ(t) =

P
Tjt

1
Z(Tj )

⌘
P

Tjt
�Ĥ(Tj),

Suppose that our counting process N is an aggregated process
obtained from observation of n individual processes.

The Nelson-Aalen estimator Ĥ(t) can be re-written as a counting
process integral

Z
t

0
W (s)dN(s) =

Z
t

0
W (s)�(s)ds +

Z
t

0
W (s)dM(s)

=

Z
t

0
J(s)↵(s)ds +

Z
t

0
W (s)dM(s)
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Argument for small sample behaviour of the Nelson-Aalen
estimator

We have defined H
⇤(t) =

R
t

0 J(s)↵(s)ds, and thus

Ĥ(t)� H
⇤(t) =

Z
t

0
W (s)dM(s).

That is, a mean zero martingale.

E{Ĥ(t)� H
⇤(t)} = 0 Thus, Ĥ(t) is an unbiased estimator of H⇤(t), but

not necessarily of H. Remember that Var(M(t)) = E{[M](t)} = E{N(t)},
and using the result from Slide 155,

Var(Ĥ(t)� H
⇤(t)) = E{[Ĥ � H

⇤](t)} = E{
Z

t

0
W (s)2dN(s)}
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Remark on H(t) and H
⇤(t)

Suppose we restrict ourselves to an interval [0, ⌧ ] such that S(⌧) > 0.

Then limn!1 H
⇤(n)(t) = H(t).
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Large sample properties

Suppose N is obtained by aggregating n individual processes. We will then
use the Martingale central limit theorem.

Theorem (Rebolledo’s martingale central limit theorem)

Let V (t) be a strictly increasing continuous function with V (0) = 0. Let
M̃

(n)
, n � 1 be a sequence of mean zero martingales on [0, ⌧ ], and let

M̃
(n)
✏ be the martingale containing all the jumps of M̃

(n)
larger than a

given ✏ > 0. If

hM̃(n)i(t) P�! V (t) for all t 2 [0, ⌧ ] as n ! 1

hM̃(n)
✏ i(t) P�! 0 for all t 2 [0, ⌧ ] and ✏ > 0 as n ! 1,

then the sequence M̃
(n)

converges in distribution to the mean zero

martingale U given by U(t) = B(V (t)), where B(·) is a Wiener process

(Brownian motion).
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What you must know about the Martingale Central Limit
Theorem

Under fairly general assumptions, a sequence of martingales M̃(n) will
converge in distribution to a mean zero Guassian martingale
U(t) = B(V (t)), where V (t) is a strictly increasing continuous function
with V (0) = 0 and B(t) is a Wiener process (formal definition in the next
slide, as repetition). Thus, U inherits the properties of a Wiener process:

U(0) = 0

U(t)� U(s) are normally distributed with mean 0 and variance
V (t)� V (s).

independent increments.

continuous sample paths.
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Wiener process (Brownian motion, repetition)

Definition (Wiener process)

The B = {B(t) : t 2 [0, ⌧ ]} is a process satisfying

B(0) = 0,

independent increments, that is, B(t + u)� B(t) u � 0 are
independent of B(s), for all s  t,

Gaussian increments, that is, B(t + u)� B(t) ⇠ N (0, u),

continuous sample paths, that is, B(t) is continuous in t.
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Su�cient conditions for the Martingale CLT

We will study the limiting behaviour of sequences of stochastic integrals
on the form Z

t

0
G

(n)(s)dM(n)(s),

where G is a predictable process and M is counting process martingale.
More generally, we will study sums of 1, . . . , k such integrals

kX

j=1

Z
t

0
G

(n)
j

(s)dM(n)
j

(s).

In this setting, Let V (t) =
R
t

o
v(s)ds. For the martingale CLT to hold it

is su�cient that the following two conditions hold (under regularity
conditions):

P
k

j=1

�
G

(n)
j

(s)
�2
�(n)
j

(s)
P�! v(s) > 0 for all j = 1, . . . , k s 2 [0, ⌧ ], as

n ! 1.

G
(n)
j

(s)
P�! 0 for all j = 1, . . . , k amd s 2 [0, ⌧ ], as n ! 1.
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Properties of the Nelson-Aalen estimator

Theorem (Large sample porperties of Nelson-Aalen)
p
n(Ĥ(t)� H

⇤(t)) converges in distribution to a mean zero martingale

with variance �2(t) =
R
t

0
↵(s)
z(s) ds.

At a particular t, the Nelson-Aalen estimator is approximately normal, and

a consistent estimator of the variance of Ĥ(t) is

�̂2(t) =

Z
t

0
W (s)2dN(s).

Note that we can also the survival function from the cumulative hazard
function using the estimator

ˆ̂
S(t) = exp{�Ĥ(t)},

which is consistent by the continuous mapping theorem: for a continuous

function g , if X (n) D�! X then g(X (n))
D�! g(X ).
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Large Sample Properties of Nelson-Aalen

Remember that W (s) = J(t)
Z(t) when Z (t) > 0. Consider the martingale

p
n(Ĥ(t)� H

⇤(t)) =

Z
t

0

p
nW (s)dM(s).

Assume that Z(t)
n

P�! z(t) > 0 for all t 2 [0, ⌧ ] as n ! 1.
When J(t) = 1, we have that for G (t) =

p
nJ(t)/Z (t) and

�(t) = Z (t)↵(t),

G (t)2�(t) =
J(t)↵(t)

Z (t)/n
P�! ↵(t)

z(t)

G (t) =
1p
n

J(t)

Z (t)/n
P�! 0,

for all t 2 [0, ⌧ ] as n ! 1.
So, here we can use the martingale clt...
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How to obtain confidence intervals

We can therefore write standard confidence intervals at level ⌘ by
Ĥ(t)± z1�⌘/2�̂(t), where z1�⌘/2 is the 1� ⌘/2 fractile of the standard
normal distribution.
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Time between first and second birth
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Time between first and second birth
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Example Divorce Rates21

21from Aalen et al (2008)
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Example COVID in real-life
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Angioplasty is standard of care
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Kaplan-Meier estimator

The most common estimator in the survival analysis literature is the
Kaplan-Meier estimator.
Suppose we partition [0, t] into small intervals defined by 0 < t0, t1, · · · tK = t,
and use conditional probabilities to express

S(t) =
KY

k=1

S(tk | tk�1), S(v | u) = S(v)

S(u)
, v > u.

Then we estimate S(tk | tk�1) by 1 if no event happened in (tk�1, tk ], and if an
event happened, and if Tj 2 (tk�1, tk ] we estimate it by
1� 1/Z (tk�1) = 1� 1/Z (Tj), where Z (t) =

P
n

i=1 I (T̃i � t).

Definition (The Kaplan-Meier estimator)

Ŝ(t) =
Y

Tjt

⇢
1� 1

Z (Tj)

�
,

where Tj 2 {Tj : Dj = 1}.
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Relation between Nelson-Aalen and Kaplan-Meier

We shall see that the Nelson-Aalen estimator and the Kaplan-Meier
estimator are closely related.
Let T > 0 be a random survival time. Hitherto, we have assumed that
S(t) is absolutely continuous. Now, we relax this assumption: suppose
S(t) is cadlàg. Then we can define the cumulative hazard as

H(t) = �
Z

t

0

dS(u)

S(u�)

where S(u�) is the left limit of S(u) and the right hand side is a Stieltjes
integral (Now, however ↵(t) = dH(t)/dt does not necessarily exist). In
di↵erential form dS(t) = �S(t�)dH(t) or more formally in integral form
S(t) = 1�

R
t

0 S(u�)dH(u).

If S(t) is absolutely continuous, then dS(u) = �f (u)du and

S(u�) = S(u), and H(t) =
R
t

0
f (u)
S(u)du.

Informally, think about dS(t) as the increment of S in [t, t + dt).

Mats J. Stensrud Biostatistics Spring 2024 173 / 418


	Structure of the course
	Prediction vs. causal inference
	Defining a causal effect
	Lecture 2
	Causal graphs
	Intuitive motivation for causal graphs

	DAGs
	More formal consideration of graphs

	Lecture 3
	Time-to-events and survival analysis
	Processes
	Martingales

	Lecture 5
	Counting processes

	Estimation
	Lecture 6
	Lecture 7
	Hypothesis testing
	Extra slides
	P-values
	Proportional hazard models
	Lecture 8
	Previous course
	Additive hazard models
	Lecture 9
	Adjustment for dependent censoring and introduction of IPW
	Lecture 10
	Lecture 11
	Multistate models and competing events
	Lecture 12
	Lecture 13
	Analysis of counts and recurrent events
	Lecture 14
	Precision medicine and optimal regimes

