Section 12

Lecture 6
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Features of the martingale I(t)

@ The predictable variation

() = ( / GdM) () = /0 G2(s)d(M)(s).

@ The optional variation process

[1(t) / Gam]( / G2(s)d[M](s).

I might ask you to prove this in a future homework.
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Nelson-Aalen’s small sample behaviour

Define the indicator J(t) = /(Z(t) > 0) and

J(1)
0, Z(t) =0.

Define H*(t fo

Theorem (Small sample behaviour of Nelson-Aalen)

H(t) is an unbiased estimator of H*(t) with variance
Var(£i(t) — H*(£)) = E(Jy W(s)*dN(s)).
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Argument for the Nelson-Aalen estimator

Remember that the Nelson-Aalen estimator is
A(t) = Zr<tz =Y 7. AA(T)),

@ Suppose that our counting process N is an aggregated process
obtained from observation of n individual processes.

@ The Nelson-Aalen estimator I:I(t) can be re-written as a counting
process integral

/ W(s)dN(s / W(s)A(s)ds + / t W(s)dM(s)

:/ J(s)a(s) ds+/ W (s)dM(s)

0
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Argument for small sample behaviour of the Nelson-Aalen

estimator

® We have defined H*(t) = [J J(s)a(s)ds, and thus

N

A(t) — H(¢) = /0 W/(s)dM(s).

That is, a mean zero martingale.

o E{A(t) — H*(t)} = 0 Thus, H(t) is an unbiased estimator of H*(t), but
not necessarily of H. Remember that Var(M(t)) = E{[M](t)} = E{N(¢)},
and using the result from Slide 155,

Var(A(t) — H*(t)) = E{[A — H](t)} = E{/Ot W(s)?dN(s)}
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Remark on H(t) and H*(t)

@ Suppose we restrict ourselves to an interval [0, 7] such that S(7) > 0.
o Then lim, o H*("(t) = H(t).
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Large sample properties

Suppose N is obtained by aggregating n individual processes. We will then
use the Martingale central limit theorem.

Theorem (Rebolledo’s martingale central limit theorem)

Let V(t) be a strictly increasing continuous function with V(0) = 0. Let
MM n > 1 be a sequence of mean zero martingales on [0, 7], and let

l\7le(") be the martingale containing all the jumps of M) larger than a
given e > 0. If

o (MM)(¢) L V(t) for all t € [0,7] as n — oo

o (M) L5 0 forall t €0,7] and € > 0 as n — oo,
then the sequence M") converges in distribution to the mean zero
martingale U given by U(t) = B(V/(t)), where B(-) is a Wiener process
(Brownian motion).
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What you must know about the Martingale Central Limit

Theorem

Under fairly general assumptions, a sequence of martingales M) will
converge in distribution to a mean zero Guassian martingale

U(t) = B(V/(t)), where V/(t) is a strictly increasing continuous function
with V(0) = 0 and B(t) is a Wiener process (formal definition in the next
slide, as repetition). Thus, U inherits the properties of a Wiener process:

e U(0)=0
e U(t) — U(s) are normally distributed with mean 0 and variance
V(t) — V(s).

@ independent increments.

@ continuous sample paths.
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Wiener process (Brownian motion, repetition)

Definition (Wiener process)
The B = {B(t):t e [0,7]} is a process satisfying
e B(0) =0,
@ independent increments, that is, B(t + u) — B(t) u > 0 are
independent of B(s), for all s <'t,
e Gaussian increments, that is, B(t + u) — B(t) ~ N(0, u),
@ continuous sample paths, that is, B(t) is continuous in t.
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Sufficient conditions for the Martingale CLT

We will study the limiting behaviour of sequences of stochastic integrals
on the form

t
/ G)(s)dM")(s),
0
where G is a predictable process and M is counting process martingale.
More generally, we will study sums of 1,..., k such integrals

k t
3 / G ()M (s).
j=1"0

In this setting, Let V(t) = fot v(s)ds. For the martingale CLT to hold it
is sufficient that the following two conditions hold (under regularity
conditions):

° Jl-‘zl (GJ.(")(S))2)\J(.")(5) i v(s) >0forallj=1,...,kse[0,7], as
n— 0.
° Gj(")(s) 250 for all j=1,...,k amd s € [0, 7], as n — oc.
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Properties of the Nelson-Aalen estimator

Theorem (Large sample porperties of Nelson-Aalen)

Vn(H(t) — H*(t)) converges in distribution to a mean zero martingale

with variance o (t) = ot %ds.

At a particular t, the Nelson-Aalen estimator is approximately normal, and
a consistent estimator of the variance of H(t) is

52(t) = /O W/(s)2dN(s).

Note that we can also the survival function from the cumulative hazard
function using the estimator

5(t) = exp{—A(1)},

which is consistent by the continuous mapping theorem: for a continuous
function g, if X(") 2, X then g(X() 2N g(X).
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Large Sample Properties of Nelson-Aalen

Remember that W(s) = % when Z(t) > 0. Consider the martingale

VA(A(E) - H () = /0 VEW(s)dM(s).

Assume that Z(t) L z(t) > 0 for all t € [0,7] as n — 0.

When J(t) = 1 we have that for G(t) = \/nJ(t)/Z(t) and
A(t) = Z(t)a(t),

-5
1 J) P
VnZ(t)/n

G(t) =

for all t € [0, 7] as n — oc.
So, here we can use the martingale clt...

Mats J. Stensrud Biostatistics Spring 2024 165 /418



How to obtain confidence intervals

We can therefore write standard confidence intervals at level 1 by

A

H(t) £+ 21,26 (t), where z;_, /5 is the 1 — /2 fractile of the standard
normal distribution.
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Time between first and second birth
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Fig. 3.1 Nelson-Aalen estimates for the time between first and second births. Lower curve: first
child survived one year; upper curve: first child died within one year.
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Time between first and second birth
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Fig. 3.2 Nelson-Aalen estimates for the time between first and second births with log-transformed
95% confidence intervals for women who lost their first child within one year of its birth.

Mats J. Stensrud Biostatistics



Example Divorce Rates?!
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Fig. 1.4 Rates of divorce per 1000 marriages per year (left panel) and empirical survival curves
(right panel) for marriages contracted in 1960, 1970, and 1980. (Based on data from Statistics
Norway.)

Zfrom Aalen et al (2008)
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Example COVID in real-life

== Unvaccinated == Vaccinated

A Documented SARS-CoV-2 Infection B Symptomatic Covi

20
338 338 10
E2 EET
3= 3% o5
° 7 L a =@ x a IR
Days

Days

No.at No. at Ri
Unvaccinated 596618 413052 261625 186553 107209 37164 4132 | Unvaccinated 596618 413768 262,662 187,784 108242 37564 4204
Vaccinated 596618 413527 262180 187702 108529 38029 4262 | Vaccinated 596618 414140 263179 185740 103261 38299 4283

Cumulative No. of Events Cumlative No. of Events
Unvaccinated 26 37 5104 575 603 6100 | Unvaccinated 0 1419 2393
Vaccinated 0 1965 3533 4120 4405 4456 4460 | Vaccnated O 1103 1967

o7 33 38 3607
250 B B B8

C Covid:19 Hosptalization D Severe Covid-19
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Days Days

No.at
Unvaccinated 596618 414898 264437 189874 109929 38467 4310

at
Unaceinted 6618 414865 264377 146008 1053867 8432 409
596618 414933 264516 190000 110076 38571 422

596618 414916 264482 189972 110054 38561 4321 | Vaccinated
Cumulative No. of Events
125 1 24 2% 259 | Unvaccinat 1

Vaccinated
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Unaccnted
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E Death Due to Covid-19
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Days
No. at Risk

Unvaccinated 596618 414309 264479 189950 110008 38510 4316
Vaccinated  $96618 414938 264538 190032 110101 38575 4322

Cumulative No. of Events
Unvaccinated

Vaccinated 0 0 2 5 7 5
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Angioplasty is standard of care

100

Survival Free of Reinfarction (%)

Year

50 1 Streptokinase
40 - P<0.001
y
/
0{I L 1 ] T 1 1 1
0 1 2 3 4 5 6 7

Fig. 1.5 Survival curves for two treatments of myocardial infarction. Figure reproduced with per-
mission from Zijlstra et al. (1999). Copyright The New England Journal of Medicine.
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Kaplan-Meier estimator

The most common estimator in the survival analysis literature is the
Kaplan-Meier estimator.

Suppose we partition [0, t] into small intervals defined by 0 < to, t1,- - tx = t,
and use conditional probabilities to express

K
S
S(t) =[St | tier), S(v|u)= SV
k=1

Then we estimate S(tx | tk—1) by 1 if no event happened in (tx_1, t¢], and if an
event happened, and if T; € (tx—_1, tx] we estimate it by
1—-1/Z(tk_1) =1—1/Z(T;), where Z(t) =>7_, I(T; > t).

Definition (The Kaplan-Meier estimator)

- o)

Tt

where T; € {T;: D; = 1}.
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Relation between Nelson-Aalen and Kaplan-Meier

We shall see that the Nelson-Aalen estimator and the Kaplan-Meier
estimator are closely related.

Let T > 0 be a random survival time. Hitherto, we have assumed that
S(t) is absolutely continuous. Now, we relax this assumption: suppose
S(t) is cadlag. Then we can define the cumulative hazard as

£ dS(u)
o S(u—)

where S(u—) is the left limit of S(u) and the right hand side is a Stieltjes
integral (Now, however (},(l') = dH(t)/dt does not necessarily exist). In
differential form dS(t) S(t—)dH(t) or more formally in integral form
S(6) = 1— [ S(u-)aH(u).

o If S(t)is absolutely continuous, then dS(u) = —f(u)du and

S(u—) = S(u), and H(t) = f5 £4du.

Informally, think about dS(t ) as the increment of S in [t, t + dt).

H(t) = —
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